
UCRL-CONF-208375

Ray tracing through a hexahedral
mesh in HADES

G. L. Henderson, M. B. Aufderheide

December 3, 2004

NECDC 2004
Livermore, CA, United States
October 4, 2004 through October 7, 2004

Disclaimer

 This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any
specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United
States Government or the University of California. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States Government or the University of California,
and shall not be used for advertising or product endorsement purposes.

UNCLASSIFIED
Proceedings from the NECDC 2004

Henderson, G.L. et al.

UNCLASSIFIED

Ray tracing through a hexahedral mesh in HADES (U)

G.L. Henderson, * M.B. Aufderheide*

*Lawrence Livermore National Laboratory, Livermore, California, 94550

In this paper we describe a new ray tracing method targeted for inclusion
in HADES. The algorithm tracks rays through three-dimensional tetrakis
hexahedral mesh objects, like those used by the ARES code to model
inertial confinement experiments. (U)

Problem Statement
It is often useful to simulate radiographic images in industrial procedures that utilize

both radiography and computer modeling. Comparing a simulated image with a
radiographic image produced during an experiment provides a means to verify correctness
of the physics models and input data. Careful comparison between real and simulated
images can aid in the interpretation of experimental results.

HADES is a software program that simulates radiography using ray tracing
techniques. The program was originally developed to simulate X-Ray transmission
radiography, for nondestructive evaluation applications. Over time however, HADES has
grown to simulate neutron radiography over a wide range of neutron energies, proton
radiography in the 1 MeV to 100 GeV range, and recently phase contrast radiography
using X-Rays in the keV energy range. HADES can simulate parallel-ray or cone-beam
radiography through a variety of mesh types, as well as through collections of geometric
objects. HADES can be run on a variety of computer architectures including: SGI, Sun
and HP/Compaq workstations, Cray and IBM computers, and Macintosh personal
computers.

ARES is a multiprocessing program that models physical phenomena in three
dimensions. The code can be run on a variety of computer architectures. An ARES mesh
composition can include millions of hexahedral cells.

In order to render a detailed radiographic image, a HADES simulation depicts a
detector as a square array of pixels. For a 1024 x 1024 image, more than one million
transmission rays must be tracked through a multi-million cell ARES mesh; a daunting
computation.

Currently, HADES uses an algorithm that is fast and simple to ray trace this type of
mesh. For every voxel in the mesh, HADES computes a “mesh shadow” onto the detector

UNCLASSIFIED
Proceedings from the NECDC 2004

Henderson, G.L. et al.

UNCLASSIFIED

pixels. The path length due to each voxel is added at the detector plane. This approach is
very fast because it does not require tracking through the mesh. The disadvantage of this
approach is that the source-detector rays are not actually tracked through the mesh. For
future applications of HADES, the radiography algorithm will need complete tracks
returned by the ray tracking procedure. The problem of tracking through a tetrakis
hexahedral mesh has not been solved in general. Currently, Monte Carlo codes which
need to track through such meshes rezone into a Cartesian mesh.

Algorithm Overview
The new algorithm computes ray path lengths through cells that comprise a three

dimensional mesh object. This method considers that each ray may intersect with every
cell, but imposes a set of hierarchal filters to quickly discard consideration of ray/surface
pairs that have no spatial extent overlap.

The intersection function requires pointers to structures that describe hexahedral cell
coordinates and the physical properties of all cells for one domain1. A single function
invocation can track multiple rays through one domain. The function returns a set of
linked lists, one list per input ray. Each list contains all the intersection segments between
a particular ray and an entire mesh domain of the 3D hexahedral mesh object.

The hierarchical ray filters are applied at three “mesh object” levels prior to
computing intersections. Each filter is the same spatial extent test, comparing the
Cartesian extent of ray end points with the extents of the intersection object (an entire
domain, a single cell, or one cell plane facet). The filter system works as follows: spatial
overlap is measured along the “independent” component of a ray (i.e. the [x, y, or z]
component that spans the greatest extent). If the ray and object overlap in this component,
the two “dependent” ray components are “trimmed” to the overlap extent. Ray
intersections are possible only if the ray extent along each trimmed, dependent
component overlaps the respective object extents.

The intersection function populates a linked list for each ray by looping over the cells
of a domain. Every cell is decomposed into 24 triangular facets (six faces per cell, 4
facets per face). Each triangular facet is checked for intersection with the ray. After all
facets of a cell are processed, the ray/cell intersection set is ordered by distance along the
ray, enabling intersection path length(s) to be computed.

The intersection algorithm itself is not the subject of this paper. Intersection methods
are widely published. In fact, much of our low-level intersection procedure is
implemented directly from “Computational Geometry in C” (O’Rourke, 1998).

1 In this context, a “domain” represents a collection of zones, defined by the simulation code, for the
purpose of forming parallel (independent) processes, in order to partition work to multiple computer
processors.

UNCLASSIFIED
Proceedings from the NECDC 2004

Henderson, G.L. et al.

UNCLASSIFIED

Instead, we will describe numeric difficulties that arose during the software testing
phase, and the solutions we implemented to counter those problems.

Numeric Difficulties
Deficiencies in the intersection method began to appear during a test that involved

tracking hundreds of rays. In a small test that tracks 650 rays, four rays had object path
lengths computed incorrectly. The incorrect path lengths were as much as five percent
short. Investigation revealed that, for every erroneous ray path length, the ray traversed
nearly (but not exactly) parallel through a face of one or more cells. Further inspection
indicated that, in these situations, an intersection point was computed, but the ray and
plane were so nearly parallel that computations produced inaccurate results. In this
scenario, the point of intersection typically appears to fall outside the triangular facet in
question, and a valid cell intersection was not tallied.

The figure below illustrates three classes of ray/cell intersections. The Good class of
intersections is computed correctly. Instances of the Bad class are detected and also
computed correctly by the algorithm. (Duplicate ray segments that are accumulated along
contiguous cell interfaces that share the computed intersection segment are removed
later). In our test, all four incorrectly computed ray path lengths derived from instances of
the Ugly ray/cell intersection class.

UNCLASSIFIED
Proceedings from the NECDC 2004

Henderson, G.L. et al.

UNCLASSIFIED

Solutions to Numeric Inaccuracies
(1) Tolerances have been introduced at several critical computations. This helps

somewhat, but only in determining whether a ray/plane intersection point falls
within or outside of a triangular cell face facet. Even here, adding a numeric
tolerance only provides a knob capable of dialing up or down additional
intersection segments along a temperamental ray/cell track. A larger tolerance
epsilon increases the number of intersection segments tabulated.

(2) A second tactical change produces consistently better results. Note that each
“leg” of a cell facet is, in fact shared by two facets within the cell. For every
adjacent cell that touches that leg, two more facets share that same leg. It is
possible to assure identical (and consistent) results for the common
computations that are repeated along those contiguous facets. We accomplish
this by considering a specific leg to be a directed vector extending from point A
to point B, for all the facets that share that AB segment. This can be done by
imposing a vertex ordering regimen within the intersection algorithm. These
directed line segments are used to generate planar coefficients, as well as signed
area cross products, computed to answer the ray-through-facet question. Within
a cell, consistent vector directions are attained by numbering vertices of
adjacent facets in opposite directions, in a clockwise or counter-clockwise (CW
or CCW) manner. Notice that adjacent facets which share a “corner” leg also
must order vertices in opposite directions. From an inter-cellular point of view,
consistency is achieved by considering adjacent cells to be “even” and “odd”, in
all three logical mesh dimensions (visualize a three dimensional checkerboard
pattern where even cells are white, and odd cells are black). The vertex order
for each specific facet of an odd cell is opposite that of the vertex order
direction (CW versus CCW) on even cells.

UNCLASSIFIED
Proceedings from the NECDC 2004

Henderson, G.L. et al.

UNCLASSIFIED

(3) Finally, the cells that tally exactly one intersection with a ray are now
considered a pathologic case, and evoke special testing. We originally
considered this event to be a tangential touch between the ray and the cell.
However, diagnostics revealed that this condition accounted for many of the
object path length intersection shortages, so that assumption has been changed.
We now consider this to be an indication that a ray and surface may be nearly
parallel. As such, the circumstance triggers a ray “bumping” algorithm which
slightly shifts both ray endpoints (up to 8 different directions), until at least two
intersections are tallied, or all eight bumping directions have been exhausted
without achieving two or more intersections.

As one might infer from the improvements above, those enhancements may mitigate
potential numeric inaccuracies, but by no means do they assure correct ray intersection
path lengths. In order to compensate for the limitations of our intersection method (and of
floating-point hardware), we have introduced a ray “combing” process, as a final step to
the ray tracking procedure. The combing process entails very little overhead because it
makes use of one of an existing tracking product requirement (return the ray/mesh
intersection segments ordered by distance along the ray). Thus far, this practice has
produced very accurate path length results for tests.

(4) The ray combing step is initiated after all intersection segments for a ray have
been calculated and ordered by unit position along the ray (0. to 1). The ray
combing process “walks and preens” an ordered ray segment list in its entirety.
The following combing techniques are applied to each ordered list of ray
intersection segments:

o Detect duplicate ray coverage segment sequences. Keep the segment
combination that produces the “best fit”, and longest ray segment span.
Delete the duplicate coverage segments.

o Find contiguous segments with overlapping ray coverage, but where
each segment offers a unique coverage length along the ray. Crop both
segments so as to eliminate the overlap.

o Find gaps in the ray path coverage. For logical mesh situations where
simulation voids are prohibited, extend adjacent segment lengths to fill
the ray coverage gap.

Conclusions
o A new ray tracing method has been developed for HADES. The procedure tracks

rays through a three dimensional, hexahedral mesh.
o Numeric inaccuracies became apparent during early tests of the algorithm.
o Using a variety of tactics, we appear to have been conquered these errors, at least

for a limited set of small tests.

UNCLASSIFIED
Proceedings from the NECDC 2004

Henderson, G.L. et al.

UNCLASSIFIED

o The addition of a function to comb through the ordered mesh path segments
along each ray provides assurance against erroneous intersection events that can
arise due to numeric inaccuracies.

Recent Developments and Future Plans
The new ray tracing algorithm (as are many others) is “embarrassingly parallel”. Only

the ray combing function depends on data that is compute-order dependent.

We have recently developed a parallel version of the algorithm, implemented as a

stand-alone “driver” program. A single source code contains both serial and parallel logic.
The parallel flow control is written using a master/slave paradigm. It invokes functions
from an MPI library.

There are various trade offs to consider when designing a multiprocessing model. The

master/slave model has a glaring disadvantage. If executed on a small number of
processors, the master process (which, in this case, is a significant fraction of compute
resources) is idle much of the time. This is because the master process simply orchestrates
the work of slave processors. During long, compute-intensive jobs, idle processors can
significantly increase wall clock time to completion. On the other hand, a key advantage
of the master/slave paradigm is that slave processor idle time is minimized, since the
master immediately reassigns new work to an idle slave processor. This model can be
efficient for runs that enlist many processors.

We decided to implement a master/slave model because important customers are

using massively parallel computers. Furthermore, our ray tracing application is organized
to minimize memory cache swaps; decomposing the work into equal sized compute tasks
is difficult. It is impossible to predict what the “typical” number of processors to be
allotted to next years “typical” HADES 3D, parallel run will be. If “normal usage”
evolves into 8-processor HADES runs, then mediocre compute time gains might follow.
This scenario could warrant integration of a second, simpler, round robin parallel model.
In this alternative model, all processors would compute ray tracks. Each processor would
track all rays through every n’th mesh domain, where n is the number of processors
allocated to the job. Both models could coexist in HADES, with the round robin method
invoked internally for parallel jobs enlisted with 8 processors or less.

We have run a few tests to validate the master/slave parallel implementation. The

tests were run on IBM and HP/Compaq multiprocessor platforms. The biggest test
intersects 65000 rays with 62000 cells. The 62000 cells comprise one quarter of a
hemisphere. Because the geometry is symmetric about the X and Y axial planes, each cell
is internally reflected about the X- and Y-axis (a common HADES option), resulting in a
simulated 248000 cell hemisphere. This test is far smaller than simulations that will be

UNCLASSIFIED
Proceedings from the NECDC 2004

Henderson, G.L. et al.

UNCLASSIFIED

run by customers. Timings for that test are summarized in Table 1 (for an HP/Compaq
computer), and in Table 2 (for an IBM computer). All runs produced accurate path length
results. The observed load balance is excellent on the IBM computer, and somewhat less
so on the HP/Compaq computer run. On the IBM, notice that, as more processors are
applied to the run, time of completion continues to drop.

Table 1: HP/Compaq ES45 EV68 @ 1 GHz.a

Number
of

CPUs

CPU
 time

[longest]
(sec)

CPU
time

[shortest]
(sec)b

Speedup
Factorc

Serial 790.58 --------
4 389.10 (333.48) 2.03x

a Each node contained 4 processors and 3.2 GB memory. MPI software provided shared memory MPI only.

b Compare longest and shortest processor compute time for an indication of processor load disparity.
c Speedup Factor times longest CPU time = Serial run time.

Table 2: IBM Power4 p655 @ 1.5 GHz.a

Number
of

CPUs

CPU
 time

[longest]
(sec)

CPU
time

[shortest]
(sec)b

Speedup
Factorc

Serial 610.82 --------

4 269.80 (269.35) 2.26x

8 127.17 (126.16) 4.80x

16 67.50 (67.10) 9.05x

a Each node contained 8 processors and 16GB memory. Federated switch for inter-node MPI
communication.

b Compare longest and shortest processor compute time for an indication of processor load disparity.
c Speedup Factor times longest CPU time = Serial run time.

UNCLASSIFIED
Proceedings from the NECDC 2004

Henderson, G.L. et al.

UNCLASSIFIED

In the near future, we plan to:

o Implement both the serial and parallel versions of the ray tracing algorithm into

the next HADES floor version for further testing.
o If the algorithm survives the rigors of customer testing, the algorithm will be

adapted into the HADES C++ code rewrite.

Acknowledgements
This work was performed under the auspices of the U.S. Department of Energy by
University of California Lawrence Livermore National Laboratory under contract no W-
7405-Eng-48.

References
O’Rourke, J., Computational Geometry in C, Second Edition, (Cambridge University

Press, Cambridge, UK, 1998), chapters 1 and 7.

